CS222 / Phil358 Homework 1

Due: April 21, 2010

- 1. (a) Show that any relation R that is Euclidean and reflexive is also symmetric and transitive.
 - (b) Give a derivation in the logic **KT** of the **D** axiom, $\neg \Box (p \land \neg p)$. In other words, show that it follows in **K** from the axiom **T** alone.
- 2. Show that axiom 5, $\Diamond \phi \to \Box \Diamond \phi$ is valid on a frame (W, R), if and only if R is Euclidean.
- 3. Consider the following logic \mathcal{L} in the language with two operators, K and B. We take all **S5** axioms for K, all **KD45** axioms for B, and following two "bridge axioms":

$$\begin{array}{l} K\phi \rightarrow B\phi \\ B\phi \rightarrow BK\phi \end{array}$$

We take as rules for \mathcal{L} both *modus ponens* and the necessitation rule for Kand B (from $\mathcal{L} \vdash \phi$, infer $\mathcal{L} \vdash K\phi$ and $\mathcal{L} \vdash B\phi$). Show that $\mathcal{L} \vdash K\phi \leftrightarrow B\phi$.

- 4. Show that $\neg K \neg K \phi \rightarrow K \neg K \neg K \phi$ is valid in all (single agent) KB-models. This can either be done directly by giving a model-theoretic argument, or by providing a derivation from the sound and complete proof system given on p.435-436 of *Multiagent Systems* (p.418 of the hard copy).
- 5. In this problem we consider a possible definition of *common belief*, analogous to the definition of common knowledge. Suppose we have just two agents, 1 and 2. Given a frame (W, R_1, R_2) , define $\mathfrak{R} := (R_1 \cup R_2)^*$, i.e. the transitive closure of $R_1 \cup R_2$. Then we define our common belief operator \mathfrak{C} as follows:

 $\mathcal{M}, w \vDash \mathfrak{C}\phi \iff \forall x \in W, \text{ if } w\Re x \text{ then } \mathcal{M}, x \vDash \phi$

Provide a **KD45** structure \mathcal{M} , a state w, and a formula ϕ , such that $\mathcal{M}, w \vDash B_1 \mathfrak{C} \phi$, but $\mathcal{M}, w \nvDash \mathfrak{C} \phi$.